该错误来自于
1
| from torch_geometric.data import InMemoryDataset
|
原因在于pytorch和torch_geometric的版本不正确,下面是正确的版本
1 2 3 4 5 6 7 8
| torch 1.8.2+cu111 torch-cluster 1.5.9 torch-geometric 1.7.2 torch-scatter 2.0.8 torch-sparse 0.6.13 torch-spline-conv 1.2.1 torchaudio 0.8.2 torchvision 0.9.2+cu111
|
NVIDIA驱动确认
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
| $ nvidia-smi Wed May 4 23:56:55 2022 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 470.103.01 Driver Version: 470.103.01 CUDA Version: 11.4 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA GeForce ... Off | 00000000:01:00.0 On | N/A | | N/A 45C P8 7W / N/A | 548MiB / 5926MiB | 9% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | 0 N/A N/A 1193 G /usr/lib/xorg/Xorg 253MiB | | 0 N/A N/A 1507 G /usr/bin/gnome-shell 125MiB | | 0 N/A N/A 72007 G ...AAAAAAAAA= --shared-files 22MiB | | 0 N/A N/A 80325 G ...RendererForSitePerProcess 44MiB | | 0 N/A N/A 80710 G ...745551279139901666,131072 95MiB | +-----------------------------------------------------------------------------+
|
只要有这个存在,就代表已经有了NVIDIA驱动,版本号为Driver Version: 470.103.01
pytorch的cuda版本确定
从这里选择cuda 11.1,注意虽然NVIDIA smi写着CUDA Version: 11.4 ,但是官网https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html 指出,其实只要显卡驱动版本大于450的即可https://pytorch.org/get-started/locally/
从这里可以看见,stable(1.11.0)版本的PyTorch支持到cuda 11.3,LTS版的1.8.2支持到cuda 11.1
这里我下载LTS版的1.8.2
1
| pip3 install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio==0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
|
cuda下载
https://developer.nvidia.com/cuda-11.1.1-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=2004&target_type=runfilelocal
从这里选择cuda 11.1,注意虽然NVIDIA smi写着CUDA Version: 11.4 ,但是官网https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html 指出,其实只要显卡驱动版本大于450的即可
pytorch-geometric依赖包下载
可以从pytorch-geometric的官网https://data.pyg.org/whl/ 查找对应pytorch+cu111的其他包